

Analytik von Lebensmitteln, Trinkwasser, Kosmetika, Bedarfsgegenständen und Futtermitteln

Trinkwasserlabor nach § 15 Abs. 4 der TrinkwV Zulassung nach § 44 Infektionsschutzgesetz

Zulassung für amtliche Gegenproben nach § 43 LFGB

Erlaubnis zum Arbeiten mit Tierseuchenerregern nach § 2 Abs. 1 TierSeuchErV

Benennung als amtliches Labor nach Art. 37 Abs. 1 der Verordnung (EU) 2018/625

Die Akkreditierung gilt für den in der Urkundenanlage festgelegten Geltungsbereich.

Burglengenfeld, 25.09.2025

Labor Kneißler GmbH & Co. KG - Unterer Mühlweg 10 - 93133 Burglengenfeld

Zweckverband Wasserversorgung Schwend-Poppberg-Gruppe Am Dorfplatz 2 922278 Illschwang Deutschland

Prüfbericht

Prüfberichtsnummer: **25-0817671**Probennummer: 25-0817671

Projekt: Trinkwasseruntersuchung Parameter Gruppe A + B

Probenahme durch: E. Halk, Labor Kneißler

Eingangsdatum: 28.08.2025
Untersuchungsbeginn: 28.08.2025
Untersuchungsende: 25.09.2025
Probenart: Trinkwasser

Einsender K: Schwend-Poppberg Gruppe - Illschwang

Verteiler: GA Amberg-Sulzbach

Probenahmeort: Öffentl. WV Schwend-Poppberg
Entnahmestelle: HB Schwenderöd, Kammer 1, PN-Hahn

LfW-Objektkennzahl: 1230 0371 00301 **Probenahmedatum:** 28.08.2025, 11:45

Kundenprobennummer K: EH08

Trinkwasserverordnung: Parameter der Gruppe A

Parameter	Einheit	Ergebnis	GW	Verfahren
Probenahme		х	//	DIN ISO 5667-5:2011-02 (A4)
Probenahmezweck nach EN ISO 19458		A	//	DIN EN ISO 19458: 2006-12 (K19)
Desinfektion der Probenahmestelle		thermisch		EN ISO 19458: 2006-08 (K19)
Wassertemperatur (vor Ort)	°C	11,8		DIN 38404-4:1976-12 (C4)
pH-Wert (vor Ort)		7,4	6,5 - 9,5	DIN EN ISO 10523: 2012-04 (C5)
elektrische Leitfähigkeit bei 25 °C (vor Ort)	μS/cm	654	2790	DIN EN 27888: 1993-11 (C8)
Geruch (organoleptisch, vor Ort)	har	ohne	ohne anormale Veränderung	DIN EN 1622 - Anhang C: 2006-10 (B3)
Geschmack (organoleptisch, vor Ort)		ohne	ohne anormale Veränderung	DEV B1/2 Teil a: 1971
Koloniezahl bei 22 °C	KBE/ml	0	100	TrinkwV § 43 Absatz (3)

Seite 1 von 7 zu Prüfbericht 25-0817671

Die Prüfergebnisse beziehen sich ausschließlich auf den untersuchten Anteil der Proben.

Eine auszugsweise Veröffentlichung oder Vervielfältigung ist nur mit Genehmigung des Instituts erlaubt.

Trinkwasserverordnung: Parameter der Gruppe A

Parameter	Einheit	Ergebnis	GW	Verfahren
Koloniezahl bei 36 °C	KBE/ml	0	100	TrinkwV § 43 Absatz (3)
Coliforme Bakterien	KBE/100 ml	0	0	DIN EN ISO 9308-2:2014-06
Escherichia coli	KBE/100 ml	0	0	DIN EN ISO 9308-2:2014-06
Enterokokken	KBE/100 ml	0	0	DIN EN ISO 7899-2:2000-11
Färbung (spektraler Absorptionskoeffizient bei 436 nm)	m-1	<0,1 *	0,5	DIN EN ISO 7887 - Verfahren B: 2012-04 (C1)
Trübung, quantitativ	NTU	0,2	1,0	DIN EN ISO 7027-1:2016-11 (C 21)

Trinkwasserverordnung: Parameter Gruppe B: Anlage 2 Teil I

Parameter	Einheit	Ergebnis	GW	Verfahren
Benzol	µg/l	<0,30 *	1,0	DIN 38407-43:2014 (F43)
Bor	mg/l	<0,06 *	1,0	DIN EN ISO 17294-2:2024-12
Bromat	mg/l	<0,0005 *	0,010	QMAA-IA-91:2020-01 (LC- MS/MS)
Chrom	mg/l	<0,0012 *	0,050	DIN EN ISO 17294-2:2024-12
Quecksilber	mg/l	<0,00008 *	0,0010	DIN EN ISO 17294-2:2024-12
Selen	mg/l	<0,0010 *	0,010	DIN EN ISO 17294-2:2024-12
Cyanid, gesamt ¹	mg/l	<0,005 *	0,050	DIN EN ISO 14403 -1 (D2) 2012-10
1,2 Dichlorethan	μg/l	<1 *	3,0	DIN 38407-43:2014 (F43)
Fluorid	mg/l	0,07	1,5	DIN EN ISO 10304-1:2009-07 (D20)
Nitrat	mg/l	15	50	DIN EN ISO 10304-1:2009-07 (D20)
Summe aus Trichlorethen und Tetrachlorethen	μg/l	0	10,0	DIN 38407-43:2014 (F43)
Trichlorethen	µg/l	<1 *	10,0	DIN 38407-43:2014 (F43)
Tetrachlorethen	μg/l	<1 *	10,0	DIN 38407-43:2014 (F43)
Uran	μg/l	0,9	10,0	DIN EN ISO 17294-2:2024-12

Trinkwasserverordnung: Parameter Gruppe B: Anlage 2 Teil II

Parameter	Einheit	Ergebnis	GW	Verfahren
Antimon	mg/l	<0,0004 *	0,0050	DIN EN ISO 17294-2:2024-12
Arsen	mg/l	<0,0002 *	0,010	DIN EN ISO 17294-2:2024-12
Blei	mg/l	<0,0011 *	0,010	DIN EN ISO 17294-2:2024-12
Cadmium	mg/l	<0,0006 *	0,0030	DIN EN ISO 17294-2:2024-12
Kupfer	mg/l	<0,013 *	2,0	DIN EN ISO 17294-2:2024-12
Nickel	mg/l	<0,0003 *	0,020	DIN EN ISO 17294-2:2024-12
Nitrit	mg/l	<0,05 *	0,50	DIN EN ISO 13395:1996-12 (D 28)
Summe polycyclische aromatische Kohlenwasserstoffe	µg/l	0	0,10	DIN 38407-39:2011-09 (F39)
Benzo(a)pyren	μg/l	<0,0025 *	0,010	DIN 38407-39:2011-09 (F39)
Benzo(b)fluoranthen	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Benzo(k)fluoranthen	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Benzo(ghi)perylen	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Indeno(1,2,3-cd)-pyren	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Epichlorhydrin	mg/l	<0,00003 *	0,00010	DIN EN 14207:2003-09 (P9)

Trinkwasserverordnung: Parameter Gruppe B: Anlage 2 Teil II

Parameter	Einheit	Ergebnis	GW	Verfahren
Vinylchlorid	mg/l	<0,00015 *	0,00050	DIN 38407-43:2014 (F43)

Trinkwasserverordnung: Parameter Gruppe B. Anlage 3 Teil I (Indikatorparameter)

Parameter	Einheit	Ergebnis	GW	Verfahren
Natrium	mg/l	7,68	200	DIN EN ISO 17294-2:2024-12
Ammonium	mg/l	<0,05 *	0,50	DIN EN ISO 11732:2005-05 (E 23)
Chlorid	mg/l	27	250	DIN EN ISO 10304-1:2009-07 (D20)
Aluminium	mg/l	<0,013 *	0,200	DIN EN ISO 17294-2:2024-12
Eisen	mg/l	<0,012 *	0,200	DIN EN ISO 17294-2:2024-12
Mangan	mg/l	<0,0004 *	0,050	DIN EN ISO 17294-2:2024-12
Gesamter organischer Kohlenstoff (TOC)	mg/l	1,4	ohne anormale Veränderung	DIN EN 1484: 2019-04 (H 3)
Sulfat	mg/l	19	250	DIN EN ISO 10304-1:2009-07 (D20)

Trinkwasserverodnung: Parameter Gruppe B: korrosionschemische Untersuchung

Parameter	Einheit	Ergebnis	GW	Verfahren
Säurekapazität bis pH 8,2	mmol/l	0,0		DIN 38409: 2005-12 (H7-1)
Säurekapazität bis pH 4,3	mmol/l	5,7		DIN 38409: 2005-12 (H7-2)
Basekapazität bis pH 8,2	mmol/l	0,53		DIN 38 409: 2005-12 (H7-4-1)
Calcium	mg/l	91,1		DIN EN ISO 17294-2:2024-12
Magnesium	mg/l	31,4		DIN EN ISO 17294-2:2024-12
Kalium	mg/l	0,60		DIN EN ISO 17294-2:2024-12
Calcitlösekapazität	mg/l	-17,2	5	DIN 38404-10: 2012-12 (C10)
Gesamthärte	°dH	19,96		DIN 38409-6: 1986-01 (H6)
Gesamthärte als CaCO3	mmol/l	3,56		DIN 38409-6: 1986-01 (H6)
Härtebereich nach Wasch- und Reinigungsmittelgesetz (WRMG)		hart		berechnet
Kohlensäure, frei (CO2)	mg/l	24,11		Berechnet
Kohlensäure, zugehörig (CO2)	mg/l	24,11		Berechnet
Kohlensäure, überschüssig (CO2)	mg/l	0,00		Berechnet
Korrosionsquotient (S1)		0,25	<0,5	berechnet
Anionenquotient (S2)		4,78	<1 bzw.>3	berechnet
Kupferquotient (S)		28,30	>1,5	berechnet
ortho-Phosphat	mg/l	<0,29 *		DIN EN ISO 10304-1:2009-07 (D20)

Chemische Untersuchung Trinkwasser

Parameter	Einheit	Ergebnis	GW	Verfahren
Acrylamid	mg/l	<0,00002 *	0,00010	DIN 38413-6:2007-02

Parameter	Einheit	Ergebnis	GW	Verfahren
2,4-D ¹	μg/l	<0,02	0,10	DIN 38407-F 36:2014-09 (UST)
Aclonifen ¹	μg/l	<0,05 *	0,10	DIN 38407-F 36:2014-09 (UST)
Amidosulfuron ¹	μg/l	<0,05	0,10	DIN 38407-F 36:2014-09 (UST)

Parameter	Einheit	Ergebnis	GW	Verfahren
Atrazin ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Atrazin-2-hydroxy ¹	μg/l	<0,02	0,10	DIN 38407-F 36:2014-09 (UST)
Azoxystrobin ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Beflubutamid ¹	μg/l	<0,02	0,10	DIN 38407-F 36:2014-09 (UST)
Bentazon ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Bixafen ¹	μg/l	<0,02	0,10	DIN EN ISO 6468:1997-02 (UST) Abweichung: GC-MS
Boscalid ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Bromacil ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Bromoxynil ¹	μg/l	<0,02 *	0,10	DIN 38407-F 35:2010-10 (UST)
Carbendazim ¹	μg/l	<0,02	0,10	DIN 38407-F 36:2014-09 (UST)
Carbetamid ¹	μg/l	<0,02	0,10	DIN 38407-F 36:2014-09 (UST)
Chloridazon ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Chlortoluron ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Clodinafop ¹	μg/l	<0,02	0,10	DIN 38407-F 36:2014-09 (UST)
Clomazone ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Clopyralid ¹	μg/l	<0,05	0,10	DIN 38407-F 36:2014-09 (UST)
Clothianidin ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Cyflufenamid ¹	μg/l	<0,02	0,10	DIN EN ISO 6468:1997-02 (UST), Abweichung: GC-MS
Cyproconazol ¹	μg/l	<0,02 *	0,10	DIN EN ISO 6468:1997-02 (UST), Abweichung GC-MS
Desethylatrazin ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Desethyl-desisopropylatrazin ¹	μg/l	<0,02 *	0,10	DIN 38407-F 36:2014-09 (UST)
Desethylsimazin ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Desethylterbutylazin ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Dicamba ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Dichlorprop (Isomere incl. Dichlorprop-P) 1	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Difenoconazol ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Diflufenican ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Dimefuron ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dimethachlor ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Dimethenamid (Isomere incl.	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Dimethenamid-P) ¹				, ,
Dimethoat ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Dimethomorph ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Dimoxystrobin ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Diuron ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Epoxiconazol ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Ethidimuron ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Ethofumesat ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Fenoxaprop ¹	µg/l	<0,02 *	0,10	DIN 38407-F36:2014-09 (UST)
Fenpropidin ¹	µg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Fenpropimorph ¹	µg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
	+		- + '	(7

Parameter	Einheit	Ergebnis	GW	Verfahren
Flonicamid ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Florasulam ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Fluazifop (Isomere incl. Fluazifop-P) 1	μg/l	<0,02	0,10	DIN 38407-F 35:2010-10 (UST)
Fluazinam ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Fludioxonil ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Flufenacet ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Flumioxazin ¹	μg/l	<0,05	0,10	DIN 38407-36:2014-09 (F36)
Fluopicolide ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Fluopyram ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Flupyrsulfuron-methyl ¹	μg/l	<0,05	0,10	DIN 38407-F36:2014-09 (UST)
Fluroxypyr ¹	μg/l	<0,05 *	0,10	DIN 38407-36:2014-09 (F36)
Flurtamone ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Flusilazol ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fluxapyroxad ¹	µg/l	<0,02	0,10	DIN 38407-F36:2014-09 (UST)
Foramsulfuron ¹	µg/l	<0,03	0,10	DIN 38407-F 36:2014-09 (UST)
Glyphosat ¹	μg/l	<0,05 *	0,10	DIN ISO 16308:2013-04 (UST)
Haloxyfop (Isomere incl. Haloxyfop-P) 1	µg/l	<0,05	0,10	DIN 38407-F 35:2010-10 (UST)
Imazalil ¹	μg/l	<0,05	0,10	DIN 38407-36:2014-09 (F36)
Imidacloprid ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
lodosulfuron-methyl ¹	μg/l	<0,05 *	0,10	DIN 38407-F 35:2010-10 (UST)
loxynil ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Iprodion ¹	μg/l	<0,02	0,10	DIN EN ISO 6468:1997-02
prodicti	ру/1		0,10	(UST), Abweichung: GC-MS
Isoproturon ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
lsopyrazam ¹	μg/l	<0,02	0,10	DIN 38407-F 36:2014-09 (UST)
Isoxaben ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Kresoxim-methyl ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Lenacil ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Mandipropamid ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
MCPA ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Mecoprop (Isomere incl. Mecoprop-P) 1	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Mesosulfuron-methyl ¹	μg/l	<0,05	0,10	DIN 38407-36:2014-09 (F36)
Mesotrione ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Metalaxyl ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Metamitron ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Metazachlor ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Metconazol ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Methiocarb ¹	μg/l	<0,05	0,10	DIN 38407-36:2014-09 (F36)
Methoxyfenozid ¹	μg/l	<0,02	0,10	DIN 38407-F36:2014-09 (UST)
Metobromuron ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Metolachlor (Isomere incl. Metolachlor-P) 1	µg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Metosulam ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Metribuzin ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Metsulfuron-methyl ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)

Parameter	Einheit	Ergebnis	GW	Verfahren
Myclobutanil ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Napropamid ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Nicosulfuron ¹	μg/l	<0,05 *	0,10	DIN 38407-36:2014-09 (F36)
Penconazol ¹	µg/l	<0,02	0,10	DIN EN ISO 6468:1997-02 (UST), Abweichung: GC-MS
Pendimethalin ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Pethoxamid ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Picolinafen ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Picoxystrobin ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Pinoxaden ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Pirimicarb ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Prochloraz ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Propamocarb ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Propaquizafop ¹	μg/l	<0,05	0,10	DIN 38407-F36:2014-09 (UST)
Propazin ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Propiconazol ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Propoxycarbazone ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Propyzamid ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Proquinazid ¹	μg/l	<0,05	0,10	DIN 38407-36:2014-09 (F36)
Prosulfocarb ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Prosulfuron ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Prothioconazol ¹	μg/l	<0,05 *	0,10	DIN 38407-36:2014-09 (F36)
Pyrimethanil ¹	μg/l	<0,01	0,10	DIN 38407-36:2014-09 (F36)
Pyroxsulam ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Quinmerac ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Quinoclamin ¹	μg/l	<0,05	0,10	DIN 38407-36:2014-09 (F36)
Quinoxyfen ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Simazin ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Spiroxamine ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Sulcotrion ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Tebuconazol ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Tebufenozid ¹	μg/l	<0,02	0,10	DIN 38407-F36:2014-09 (UST)
Tebufenpyrad ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Terbutylazin ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Tetraconazole ¹	μg/l	<0,01	0,10	DIN EN ISO 6468:1997-02 (UST), Abweichung: GC-MS
Thiacloprid ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Thiamethoxam ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Thifensulfuron-methyl ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Topramezon ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Triadimenol ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)
Triasulfuron ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Tribenuron-methyl ¹	μg/l	<0,05	0,10	DIN 38407-36:2014-09 (F36)
Triclopyr ¹	μg/l	<0,05	0,10	DIN 38407-36:2014-09 (F36)
Trifloxystrobin ¹	μg/l	<0,02 *	0,10	DIN 38407-36:2014-09 (F36)

Parameter	Einheit	Ergebnis	GW	Verfahren
Triflusulfuron-methyl ¹	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Triticonazol ¹	μg/l	<0,02	0,10	DIN EN ISO 6468:1997-02 (UST), Abweichung: GC-MS
Tritosulfuron ¹	μg/l	<0,05	0,10	DIN 38407-36:2014-09 (F36)
Summe der untersuchten Pflanzenschutzmittel	μg/l	0	0,50	Berechnet

Fußnoten

Verantwortlich für Prüfbericht/Beurteilung

Dr. Stefan Dorsch, Diplom-Chemiker

Weitere Informationen zum Prüfbericht finden Sie unter:

http://kis.labor-kneissler.de/pbinfos/2025-09-25

Bemerkung:

Die Messunsicherheit wurde in der Regel aus laborinternen Qualitätsmaßnahmen abgeleitet. Sie stellt eine erweiterte Unsicherheit dar und wurde durch die Multiplikation mit dem Erweiterungsfaktor k=2 erhalten; dies entspricht einem Vertrauensbereich von 95 %. Davon abweichende Vorgehensweisen können in den Informationen zum Prüfbericht eingesehen werden.

Dieses Dokument ist maschinell erstellt und auch ohne Unterschrift gültig.

Bezüglich der Entscheidungsregel verweisen wir auf die aktuellen AGB.

Anlagen: 3 Seite(n)

¹ Analytik von Partnerlabor durchgeführt, Parameter akkreditiert

 $[\]overset{\cdot}{\mathrm{K}}$ Vom Kunden bereitgestellte Daten

^{*} Der angegebene Wert entspricht der Bestimmungsgrenze

Beurteilung als Anlage zum Prüfbericht 25-0817671

Die Untersuchungsergebnisse entsprechen zum Zeitpunkt der Probenahme den Anforderungen der TrinkwV (TrinkwV) in der aktuell gültigen Fassung.

Die Probe ist zum Zeitpunkt der Probenahme hinsichtlich der untersuchten Parameter bakteriologisch einwandfrei.

Für die untersuchten chemischen Parameter liegen keine Überschreitungen der Grenzwerte vor. Für die Indikatorparameter werden die Anforderungen eingehalten bzw. die Grenzwerte unterschritten.

Das untersuchte Trinkwasser weist einen Härtegrad von 3,57 mmol auf und ist damit nach WRMG dem Härtebereich hart zuzuordnen.

Hinweis zur den berechneten Parametern Summe Tetrachlorethen+Trichlorethen, Summe PAK, Nitrat/50+Nitrit/3:

Zur Berechnung werden die tatsächlichen analytisch bestimmten Werte eingesetzt. Werte, die kleiner als die Bestimmungsgrenze sind, werden gleich Null gesetzt.

GW: Grenzwert gem. TrinkwV bzw. Richtwert gem. DIN EN 12502 bzw. DIN 50930.

Anlage zum Prüfbericht: 25-0817671

Korrosionschemische Beurteilung:

Die Trinkwasserverordnung legt in § 14 und §15 Anforderungen an Materialien fest, die in Kontakt mit Trink-wasser stehen. Diese Materialien dürfen keine Stoffe abgeben, die nach den allgemein anerkannten Regeln der Technik vermeidbar sind. Für Werkstoffe in Kontakt mit Trinkwasser legt das Umweltbundesamt die Bewertungs-grundlage fest. Der Stoffeintrag durch metallische Werkstoffe in der Trinkwasserinstallation ist als gering anzu-sehen, wenn die Anforderungen der Bewertungsgrundlage für metallene Werkstoffe im Kontakt mit Trinkwasser (05.03.2025) des Umweltbundesamtes (Metall-BWGL) und der DIN EN 12502 Teile 1-5:2005-03 eingehalten werden. Vorausgesetzt wird ein ausreichend hoher Sauerstoffgehalt im Versorgungsnetz von mindestens 3,2 mg/l.

Parameter	Einheit	Anforderung	Wert	eingehalten
Anforderungen TrinkwV				
pH-Wert		≥ 7,7	7,4	ja
		oder		
Calcitlösekapazität	mg/l	≤ 5,0 mg/l (als Calciumcarbonat)	-17,2	

Korrosionschemische Anforderungen nach DIN EN 12502 Teile 1-5 und Metall-BWGL:						
Gusseisen, niedrig- und unlegierte Eisenwerkstoffe:						
Schutzschichten in ständig dur	Schutzschichten in ständig durchströmten Versorgungsleitungen;					
pH-Wert		> 7,0	7,4	ja		
		und				
Calcium	mg/l	> 40 mg/l	91,1			
		und				
Säurekapazität bis pH 4,3	mmol/l	> 2,0 mmol/l	5,7			

Rohrleitungen aus Gusseisen bzw. niedrig- und unlegierte Eisenwerkstoffen sind für die Verwendung in der Hausinstallation ungeeignet, da in stagnierenden Wässern unabhängig von der Wasserzusammensetzung immer Lokalkorrosion auftritt.

In ständig durchströmten Versorgungsleitungen können sich schützende Deckschichten aufbauen.

Schmelztauchverzinkte Eisenwerkstoffe:					
Anforderung nach Metall-BWGL:					
Basekapazität bis pH 8,2 mmol/l	≤ 0,20 mmol/l	0,53	nein		
Quotient S ₁	und S ₁ < 1	0,25			

Quotient S ₁		$S_1 < 0.5$	0,25	ja
		(für S ₁ > 3 ist die Korrosion sehr wahrscheinlich)		
		und		
Calcium	mg/l	≥ 20 mg/l	91,1	
		und		
Säurekapazität bis pH 4,3	mmol/l	≥ 2,0 mmol/l	5,7	
Die Wahrscheinlichkeit für se	lektive Korrosion	ist gering, wenn:		
Quotient S ₂		S ₂ < 1 oder S ₂ > 3	4,78	ja
		oder		
Nitrat	mg/l	< 20 mg/l	15	

Schmelztauchverzinkte Eisenwerkstoffe können gem. Metall-BWGL nur in der Kaltwasserinstallation eingesetzt werden, wenn Basekapazität K $_{B.8.2} \le 0.2$ und S $_1 < 1$.

In Altanlagen müssen schmelztauchverzinkte Eisenwerkstoffe nicht ausgetauscht werden, wenn nachweisbar keine Beeinträchtigung der Trinkwasserbeschaffenheit, z.B. durch Rostwasser auftritt (Metall-BWGL).

Schmelztauchverzinkte Eisenwerkstoffe können in der Kaltwasserinstallation NICHT verwendet werden

Kupfer und Kupferlegierun	gen:			
Die Wahrscheinlichkeit für Lo	chkorrosion in W	armwasserleitungen ist gering, wenn:		
Quotient S		S ≥ 1,5	28,30	ja
Die Wahrscheinlichkeit für gl	eichmäßige Fläche	enkorrosion ist gering, wenn		
pH-Wert		≥ 7,5	7,4	nein
pn-vvert		und		
Säurekapazität bis pH 4,3	mmol/l	≥ 1,0 mmol/l	5,7	
Wahrscheinlich der Freisetz ı	ıng von Korrosion	sprodukten ist gering; wenn:		
pH-Wert		≥ 7,4	7,4	ja
		oder		
pH-Wert und TOC		7,0 ≤ pH ≤ 7,4 und TOC 1,5 ≤ mg/l	1,4	
Die Verwendung von Werksto	offen aus Kupfer un	d Kupferlegierungen kann nicht empfohlen werden, da	die Wahrscheinlichke	it für

Die Verwendung von Werkstoffen aus Kupfer und Kupferlegierungen kann nicht empfohlen werden, da die Wahrscheinlichkeit für gleichmäßige Flächenkorrosion erhöht ist.

Werkstoffe aus Kupfer- und Kupferlegierungen können NICHT uneingeschränkt verwendet werden.

Nichtrostende Stähle:					
Die Wahrscheinlichkeit für sämtliche Korrosionsarten ist gering, wenn:					
Chlorid	mg/l	< 53,2 mg/l in Warmwasser	27	ja	
Chlorid	mg/l	< 212 mg/l in Kaltwasser		•	
Werkstoffe aus nichtrostenden Stählen können uneingeschränkt, sowohl in der Kalt- als auch in der Warmwasserinstallation, verwendet werden.					